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Correlation of Unsteady Pressure and Inflow Velocity Fields of
a Pitching Rotor Blade

Mihir K. Lal,* S. G. Liou,* G. A. Pierce,t and N. M. Komerathz
Georgia Institute of Technology, Atlanta, Georgia 30332

Predictions from four different analytical methods are compared with measurements of unsteady inflow
velocity and surface pressure distributions on a pitching rotor blade in hover. The test case is a stiff two-bladed
teetering rotor constructed from full-scale tail rotor blades, subjected to n/rev simple harmonic pitch oscillations
under incompressible flow conditions. The chordwise distributions of unsteady pressure at three radial locations
on the blade are compared with Theodorsen’s and Loewy’s two-dimensional incompressible unsteady aerody-
namic theories and with Kaladi’s pulsating doublet distribution method. Inflow velocity is predicted successfully
using Peters’ modal theory for steady as well as dynamic pitch conditions. The effect of dynamic inflow on rotor
unsteady surface pressure is studied. At inboard radial locations, Loewy’s two-dimensional theory for even
harmonics of forcing frequency and Theodorsen’s two-dimensional theory for odd harmonics provide efficient
and reliable predictions of unsteady blade surface pressure. At outboard radial locations, panel or modal methods
have to be used to predict amplitude and phase of unsteady pressure. Tip effects, mean pitch angle effects, and

effects of rotation have been demonstrated.

Nomenclature

b = number of blades

C(k) = Theodorsen’s lift deficiency function, F + iG

C'(k) = modified lift deficiency function for the rotor,
F' +iG’

C, = pressure coefficient, 2(p — p. )/pQ3r>
= Cl’n + C;'

C, = perturbation pressure coefficient

C, = mean or nominal pressure coefficient

c = blade chord, 298 mm

h = nondimensional spacing between successive
rows of vorticity, 7v/(cbQ})

k = reduced frequency based on blade
semi-chord, cw/(2r)) = nc/(2r)

n = harmonics of forcing frequency, w/{)

q; = ith component of perturbation velocity,
nondimensionalized using OOR

R = rotor radius, 1.295 m

r = radial location of blade section

U = local freestream velocity at the blade section,
Qr

W(kh, n) = wake weighting function

w(x™) = normal wash at x*

X = chordwise coordinate

x* = nondimensional chordwise coordinate,
(=2x/c), with origin at midchord

z = coordinate along the axis of the rotor

z" = nondimensional displacement of surface

AC), = lifting perturbation pressure coefficient,
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7 = blade pitch angle, 6, + ¢’

6 = perturbation in pitch angle

6, = mean pitch angle

v = steady inflow velocity

¢ = nondimensional coordinate along freestream
direction, positive upstream

& = nondimensional dummy variable for
integration

p = air density

[OF8 = pressure coefficient due to acceleration

oV = pressure coefficient due to momentum flux

¥ = rotor azimuth angle

Q = rotor speed

® = forcing frequency

Introduction

HE primary uncertainty in analytical models for rotor

blade aeroelastic phenomena is associated with the un-
steady aerodynamics of the rotor. Unsteady aerodynamic loads
on fixed wings for combined pitch and translation oscillations
have been studied extensively by many researchers, but much
remains unknown about similar loads on rotor blades. In ad-
dition to the effects of rotation, the rotor blade airloads are
greatly affected by the very complex wake vortex structure.
When the pitch changes rapidly, several complications arise.
At large pitch angles, dynamic flow separation becomes a
major issue, of interest in predicting blade characteristics on
the retreating side of a rotor in forward flight. We avoid this
regime in this article, and focus instead on the low-pitch,
small-amplitude oscillation regime. Here, the unsteady
boundary layer, the wake, and the shed vorticity all affect the
blade loads, and both the magnitude and the phase of these
effects must be considered to predict acroelastic phenomena.
Obviously, this is a regime where linearized analyses using

* quasisteady blade section data may be expected to be of value
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in developing aerodynamic models that can be computed ef-
ficiently enough to be coupled with structural dynamic anal-
yses. Such approaches have been used for many years, but
interest in this area has remained intense because of the ex-
treme importance of blade dynamics and of blade aerody-
namics in the prediction of dynamic blade loads. Development
of theoretical models continues to be of interest, especially
as results from comprehensive rotorcraft prediction codes en-
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Table 1 Test conditions and associated parameters at 0.70R
n = wl} 0.,
k = ncl2r deg F G h = 2av/bQf} W(kh, n) F’ G’
Sirev 4 0.552276 —0.114613 1.010883 —0.303717 0.747955 —0.067920
k = 0.82073
4frev 4 0.570367 —0.131170 1.010883 1.061550 0.328494 —0.184461
k = 0.65658
3/rev 4 0.599696 ~0.151755 1.010883 —0.378059 0.815340 —0.222282
k = 0.49444
2/rev 4 0.651994 —0.175417 1.010883 2.540888 (.266966 —0.114582
k = 0.32829
4/rev 2 —_— _— 0.566078 2.221408 0.246357 —0.220991
k = 0.65658 6 —_— —_— 1.389592 0.671029 0.382376 —0.165947
8 e —_— 1.725069 0.475313 0.420105 —0.155355
10 — _— 2.029421 0.358366 0.447746 —0.148783

able comparison with rotorcraft flight test data and generate
controversy over the sources of uncertainty. It has not been
possible in the past to perform direct comparisons ot the
performance of these models against detailed experimental
data on a rotor operating under controlled excitation. This
article describes the results of such a comparison against de-
tailed measurements of pressure and velocity fields for a rotor
that is large enough to represent full-scale rotorcraft prob-
lems.

The prior work summarized below is that directly related
to the low-amplitude, low-speed rotor blade pitching problem
of interest here. Satyanarayana and Davis' studied the un-
steady loading near the trailing edge of an oscillating wing for
reduced frequencies from 0.5 to 1.2. The measured loading
near the trailing edge differed from predictions using un-
steady, incompressible, small-disturbance theory. This evi-
dence of a violation of the Kutta condition increased with
reduced frequency for k > 0.8. Ardonceau® measured un-
steady surface pressure on a rectangular wing for k = 1.5 and
compared results with the computations of Ref. 3. The airfoil
was represented by source/sink segments and a constant vor-
tex density over the whole surface. The singularity strengths
were obtained from the system of linear equations to satisfy
zero normal relative velocity at each segment center. The
Kutta condition was zero differential loading at the trailing
edge. Partial linearization was used for the wake. At low k,
the amplitude agreed well, but phase disagreed near the trail-
ing edge. At high k, the phase agreed well, but amplitude
differed slightly. Commerford and Carta* measured the un-
steady pressure on an airfoil due to vortex shedding from an
upstream cylinder at k& = 3.9. Lorber and Covert® measured
airfoil unsteady pressure induced by an elliptic cylinder ro-
tating downstream for k < 6.4, and compared with predictions
from thin airfoil theory with measured unsteady cylinder up-
wash. A phase discrepancy appeared near the trailing edge.

Clearly, the prediction of the complex unsteady surface
pressure and the unsteady inflow velocity, involving both am-
plitude and phase, are major issues. There are several added
rotor effects. They include the varying freestream velocity
along the radius (span), the proximity of several turns of
concentrated tip vortices and layers of vorticity in the rotor
wake, the differences in the periodicity of the phenomena
based on the number of blades (whether odd or even), the
finite-span effects including those of the circulation distri-
bution on the rotor (very different from that of a fixed wing),
and the centrifugal effects of rotation. In this article, the
measurements of inflow velocity and unsteady pressure on a
two-bladed rotor in hover, described in Refs. 6 and 7, re-
spectively, are correlated with four different analytical for-
mulations. Analytical results on dynamic inflow velocity have
been taken from Ref. 8, computed using Peters’ modal method.
Analytical results on chordwise pressure distributions have
been obtained from Kaladi’s panel method described in Ref.
9. Also, Theodorsen’s' and Loewy’s!! two-dimensional un-

steady aerodynamic theories, which are well-known classical
methods, have been used to correlate the measured unsteady
pressure. The unsteadiness is driven by dynamic pitch exci-
tation of the stiff rotor blades. The facility, calibration, ki-
nematic relations, and measurement techniques are described
in Refs. 6 and 7. Reference 6 describes previous work on
measuring rotor velocity fields as well as in modeling dynam-
ics. It goes on to describe measurements of dynamic inflow
velocity at two axial locations slightly upstream of the rotor
tip path plane and uses flow visualization to document the tip
wake trajectory in the immediate vicinity of the rotor. Ref-
erence 7 describes the problem of measuring unsteady blade
surface pressure on pitching rotor blades, their solution, and
the results of those measurements.

Summary of Experiments

Part I: Inflow Velocity

The experiments were conducted in the Aeroelastic Rotor
Test Chamber at Georgia Institute of Technology.® The two-
bladed Bell 212 teetering tail rotor has a diameter of 2.58 m
and blade chord of 0.292 m. A single-component laser Dop-
pler velocimeter was used to measure the inflow velocity. Data
were acquired along the 45-deg radial line at two axial loca-
tions upstream of the tip path plane (z/R = —0.04, —0.1)
for steady pitch of 4 and 8 deg, and then with a 4/rev oscillation
of 1-deg amplitude superposed on these mean values.

Part 11: Unsteady Pressure

The blade surface pressure was measured by Kulite LO-
080-25A absolute pressure transducers as detailed in Ref. 7.
Sensors were mounted along chordwise lines at 0.7 and 0.95R
on one blade, and at 0.85R on the other blade. Chordwise
stations on the upper surface were at x/c of 0.02, 0.05, 0.15,
0.25,0.35,0.50, 0.65, and 0.95, and at 0.02, 0.05, 0.15, 0.35,
0.65, 0.95 on the lower surface. Slight variations to this layout
occurred at 0.85R where an additional transducer was mounted
at x/c = 0.80 on the upper surface, and at 0.7R where sensors
were mounted on both surfaces at x/c = 0.07 instead of 0.05.
The transducer layout is detailed in Ref. 7. The test conditions
are listed in Table 1.

Correlation Methods

Part 1: Inflow Velocity

Inflow velocity has been correlated with Peters’ and Su’s®'2
unsteady wake model for rotors. The inflow model, based on
an acceleration potential, represents shed vorticity as a three-
dimensional skewed cylindrical wake. From the inviscid mo-
mentum equation, the inflow can be written as first-order
ordinary differential equations (ODEs) in terms of inflow
expansion coefficients (state variables). The flowfield and the
rotor lift are expanded in terms of appropriate inflow modes,
and a set of closed form first-order ODEs in time defines a
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finite number of modal inflow states, with blade lift as the
forcing function. The modeling lacks wake distortion and roll-
up. The blade is a lifting-line blade rotating at Q rad/s. From
the pressure distribution on the actuator disk, average mass
flow through the disk, and the influence coefficients between
the pressure and inflow (written in terms of the wake skew
angle), the inflow expansion coefficients are determined. The
generalized forces are determined by spanwise integration of
blade sectional lift, which determines induced inflow expan-
sion coefficients. These in turn determine the pressure coef-
ficients (both ®" and ®*) by matrix inversion. The former is
related to the induced flowfield by

1 f
=—| ovd 1
U e £ (1)
Part II: Unsteady Pressure

Unsteady pressure has been correlated with Theodorsen’s
and Loewy’s two-dimensional incompressible unsteady aero-
dynamic theories and with Kaladi’s approach of doublet dis-
tributions of pulsating strength. These methods are briefly
described below.

Theodorsen’s Theory

Theodorsen’s'” two-dimensional incompressible aerody-
namic theory applies to an infinite wing where the wake lies
in the same plane and is shed behind the wing. The method
is based on thin airfoil theory and is linear. It does not account
for the wake lying underneath the rotor. Thus, the results are
insensitive to variations in the lower wake dynamics. The
performance of this two-dimensional theory will deteriorate
towards the blade tip. For fixed geometry, the unsteady pres-
sure is a function of reduced frequency only. The instanta-
neous pressure is the sum of the steady and oscillatory pres-
sures due to mean and oscillating pitch, respectively. Equation
(2) is the expression for unsteady pressure from Ref. 10. For
a simple harmonic pitch oscillation 8 = 6’e*, the differential
pressure loading at any point on the airfoil is AC,(x*, t) =

C, (x*)e*". The amplitudes AC; and " are in general com-
plex, including the phase shift between pitch excitation and
pressure response. The complex amplitude of the differential
unsteady pressure coefficient at a point x* is

Aoy = 4 Lo o1 e .
AC(x¥) \/1+xf \/1+§*x*_§* T

4 1 — x* (! 1 — &% wp(e*
+ 2 —c<k)]\/1+j*f[\/1 +?E:W(é)d§*

S Ao e D g @)
where
o e (1 — XFEE A+ V1 — x*P2V1 — *2>
AL, €7) = XY = V1 — x* V1 — &7

The first two circulatory terms on the right side of Eq. (2)
correspond to the contributions of bound vortex and wake
vorticity, respectively, and the third term is the apparent mass
term due to the inertia of the fluid adjacent to the surface
being accelerated. The entire influence of the wake vorticity
is contained within this ‘““Theodorsen function.” When this
equals unity, the wake effect on surface pressure is zero. In
terms of Hankel functions, it is

HEG)
RO

C(k)y = F(k) + iG(k) =

PITCHING ROTOR BLADE

The downwash is obtained from the linearized boundary con-
dition at the surface and is

w(x®) = w(x*)e’ (4)
where
w(x™) = az*
U ikz* + e 5)
and z¥(x*, 1) = — (.5 + x*)@ for a thin airfoil pitching about

quarter-chord [(x*).,, = —0.5].

The Cauchy principal value'® of the integrals in the circu-
latory terms are evaluated as a limiting process near the in-
tegrable singularity. The reduced frequency is calculated first
for various operating conditions and radial locations. Theo-
dorsen function values are interpolated from Ref. 14. The
apparent mass integral is evaluated numerically. The mag-
nitude and phase of the complex unsteady pressure are ex-
tracted.

Loewy’s Theory

Loewy’s!! linear, two-dimensional theory includes the wake
under the rotor. A trailing vortex sheet extends to infinity aft
of the trailing edge and several layers of planar wake vortex
sheets lie underneath, extending to infinity on either side of
the blade section. The effects of wake dynamics on unsteady
loads are captured, but finite-span effects are not captured.
The trailing vortices shed from other sections of the rotor do
not affect the unsteady loading at the radial location of in-
terest. Thus, significant error is expected near the blade tip.
The theory developed in Ref. 11 becomes identical to Theo-
dorsen’s theory if the Theodorsen function of Eq. (3) is re-
placed by the modified lift deficiency function [C’'(k, n, h) =
F' + iG'] given by Eq. 6:

C'(k, n, h)
B HP(k) + 2J,(k)W (kh, n)
OHP(k) + iHP + 2[J (k) + iJ(k)]W(kh, n)

(6)

where
Hf)z)(k) = J()(k) - iYn(k) (7)
HP(k) = Ji(k) — iY,(k) (8)

The wake weighting function for a two-bladed rotor for col-
lective pitch oscillation, W (kh, n) is given by Eq. 9:

1

ekhei-rm _ 1

W(kh, n) = )

The Bessel functions J(k), J,(k), Y,(k), and Y,(k) are ob-
tained from Ref. 15. C'(k, n, h) is calculated and C(k) in
Theodorsen’s theory is replaced by C'. As the wake spacing
h increases, the effects of wake vortex sheets lying under the
rotor diminish and Theodorsen’s results are obtained in the
limit as # — %, when C’(k, n, h) — C(k). Thus, Theodorsen’s
theory is a special case of Loewy’s development. Loewy’s
method is applicable to nonzero, low inflow cases; the theory
breaks down for zero inflow velocity corresponding to the
zero mean pitch case for a symmetrical airfoil section.

Kaladi’'s Method

Kaladi’s® used an incompressible doublet distribution with
harmonically pulsating strength on the rotor and in the wake.
Unsteady pressure loading is obtained by differentiating the
doublet strength. The panel method models the blade surface
doublet strength with chordwise and spanwise control panels,
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whereas the modal method represents the surface doublet
strength by a series of chordwise and spanwise functions. The
wake is modeled by panels in both cases. The modal method
differs from the panel method only in the use of a continuous
(as opposed to discrete) doublet distribution on the blade
surface. The distribution shape is determined by experience
with the shape of the pressure distribution. The doublet strength
gradient is assumed to be infinite at the leading edge and zero
at the trailing edge. A Legendre polynomial expansion is used
for the spanwise distribution. A Maclaurin series expansion
in terms of reduced frequency is used to evaluate integrals
for unit reduced frequency at the blade tip (Ref. 9, p. 103).
Once the integrals over the blades are obtained, influence
coefficients are determined by interpolation for a specified
frequency. Multhopp’s distribution of collocation points is
used and the number of modes is made exactly equal to the
number of collocation points.

Kaladi’s methods as used in this article used 2 spanwise and
5 chordwise panels to represent the rotor surface for the panel
method. Five spanwise and 2 chordwise modes were chosen
for the modal method. The wake was truncated after 5 rev-
olutions, and 180 panels were used in both cases with an
azimuthal width of 10 deg.

Results and Discussion
Part I: Inflow Velocity

Steady Pitch Inflow Velocity

Figure 1 shows the radial variation of the time-averaged
inflow velocity (normalized using tip speed) at z/R = —0.04
for steady pitch of 4 deg. Agreement between the experiment
and Peters’ modal theory® is excellent in the inboard region.
Large deviations in the tip region are attributed to the inability
of the lifting line analysis to capture the tip vortex roll-up.
Figure 2 shows the azimuthal variation of inflow velocity at
R = 0.824 at a steady collective pitch of 4 deg. The result
agrees well with the analytical prediction, except for un-
derprediction of the extrema at blade passage, which is at-
tributed to the truncation of the analytical model at 24 har-
monics as stated in Ref. 8.

Oscillatory Pitch Inflow Velocity

Figure 3 shows the comparison between Peters’ analysis®
and experiments at #/R = 0.765 for 4/rev pitch oscillation.
Again, the inflow extrema during the blade passage interval
are underpredicted. The time history of raw data was ex-
amined to ensure that averaging was sufficient to yield reliable
results. Again, good correlation of unsteady inflow with an-
alytical prediction has been obtained.

Part II: Unsteady Pressure

Figures 4 and 5 show amplitude and phase angle of unsteady
perturbation pressure at 70% radial location for various har-

0.05 T T T T
0.04
0.03
0.02
0.01

0.00

—{1— Experimental Results

Normalized Inflow Velocity

001+t —aA— Analytical Results, Method of
Ref.8
-0.02 - ! : :
uv.0 0.2 04 0.6 0.8 1.0
r’'R
Fig. 1 Radial distribution of averaged normalized inflow velocity at
ZZR = —0.04 for steady pitch of 4 deg, compared with resuits from

Su and Peters.?

—1— Experimental Result
—O— Analytical Result, Method of Ref.8

0.08

0.06

e

o

X
=

0.02

0.00

Normalized Inflow Velocity

z/R=-0.04, r/R=0.824

-0.02
0 90 180 270 360

Rotor Azimuth (degrees)

Fig.2 Azimuthal variation of inflow velocity at r/R = 0.824 for steady
pitch of 4 deg, compared with results from Su and Peters.?

—1— Experimental Result
—O— Analytical Result, Method of Ref.8

0.10
£
3]
= ]
3 005
% @
e~
@
£ 0001
£
St
Z
2/R=-0.04, t/R=0.765
-0.05 - - -
0 90 180 270 360

Azimuth Angle (degrees)

Fig. 3 Azimuthal inflow velocity variation at /R = 0.765 for 4/rev
pitch oscillation about 8, = 4 deg, compared with results from Su and
Peters.”

e  Experimental
Theodorsen’s, Ref.10
—— Loewy’s, Ref.11
- - - Kaladi’s (Panel), Ref.9
e Kaladi’s (Modal), Ref.9

030 0.45

Amplitude of 4G’
o015

4

Fig. 4 Lifting perturbation pressure amplitude at 0.70R.



524 LAL ET AL.: PITCHING ROTOR BLADE

G’ (Deg,)
100 150 200

Phase angle of 4
0 50

oS50

<. oV

Fig. 5 Lifting perturbation pressure phase angle at 0.70R.

monics of forcing frequency n. As described in Ref. 7, the
test conditions given in Table 1 should be divided into two
groups for studying wake dynamics effects depending on even
or odd values of the harmonics of forcing frequency . An-
alytical and numerical methods (except Theodorsen’s method)
are also sensitive to this phase effect. These two groups are
therefore dealt with separately. It is also useful to divide test
conditions along the radius into inboard and outboard stations
for analyzing the results. The former have a small spanwise
gradient of bound circulation and, hence, resemble the two-
dimensional case, while the latter require three-dimensional
analyses. Also, the effects of reduced frequency can be seen
in two ways: 1) by varying # at a fixed r/R or 2) by changing
r/R at fixed n. Different figures must be compared for the
latter case.

Phase Effects

At all radial locations Theodorsen’s theory predicts higher
unsteady pressure amplitude for even harmonics of forcing
frequency. Since Theodorsen’s theory does not account for
vorticity in the rotor wake, it is not able to capture the phase
effects described in Refs. 6 and 7. Due to the 180-deg phase
shift between successive layers of wake vorticity, the vorticity
in the wake tends to cancel out for odd harmonics of forcing
frequency and a jump in pressure amplitude is recorded during
measurement for these cases. Theodorsen’s theory only ex-
periences a change in the reduced frequency and predicts a
small change in pressure. Therefore, when # is increased from
2 to 3 or from 4 to 5, the theory predicts a small increase in
pressure amplitude while the experiment records a large in-
crease, eliminating large discrepancies between the theory
and experiment at even harmonics of forcing frequency and
bringing them closer at odd harmonics. The discrepancies
increase outboard because the theory does not account for
tip effects.

Inboard Location: Reduced Frequency Effects

At sufficiently inboard radial locations for even harmonics
of forcing frequencies (see Figs. 4 and 5, n = 2, 4), Theo-
dorsen’s method overpredicts the amplitude, as expected, and
also fails to capture the slope of the chordwise phase distri-
bution profile. As frequency increases, correlation with Theo-
dorsen’s method seems to improve both in amplitude and
phase. The effects of wake vorticity on blade unsteady loading
diminish with increasing frequency for even harmonics of forc-
ing frequency. Therefore, Theodorsen’s theory is expected to
correlate better at very high frequency. Kaladi’s modal method
consistently underpredicts the amplitude and overpredicts the
phase; the correlation becomes worse at high frequency.
Loewy’s theory and Kaladi’s pane! method converge to each
other both in amplitude and phase of the unsteady pertur-
bation pressure, though only 10 panels (2 spanwise and 5

chordwise) have been used in Kaladi’s panel method. More
chordwise panels are needed to obtain a smooth curve for
amplitude distribution. The convergence of the area under
experimental and analytical amplitude of AC, curves in-
creases with forcing frequency. It therefore appears that these
two methods predict better at higher frequency. The analytical
unsteady perturbation pressure amplitude and phase profiles
also tend to converge to the data (see Figs. 4 and 5, n = 4)
with increasing frequency. The discrepancy in profile shapes
can be attributed to the effects of rotation or possibly the
viscous effects.

Effects of Rotational Speed

As frequency increases, the reduced frequency increases
proportionately. The effect of rotational speed is lower at
higher reduced frequency. Effects of rotation should be ob-
served at low frequency as underprediction of both amplitude
and phase near the leading edge, and overprediction of am-
plitude aft of midchord. If rotation is neglected, prediction
of amplitude and phase improves with frequency. Prediction
of phase is excellent except for the problems near the trailing
edge that are discussed later. As k is increased, the phase
profile rotates and steepens as expected. The steep chordwise
phase variation for n = 4 is predicted closely by both Loewy’s
theory and Kaladi’s panel method (Fig. 5). Loewy’s theory
thus provides an inexpensive tool for predicting amplitude
and phase of unsteady pressure at sufficiently inboard radial
location for even harmonics of forcing frequency, especially
at high frequency. Viscous effects are not accounted for in
any of the analyses. A better prediction of chordwise ampli-
tude and phase distribution profile shapes is expected if these
effects are included.

Inboard Location: Odd Harmonics

At sufficiently inboard radial locations for odd harmonics
of forcing frequency, Loewy’s theory predicts higher pressure
amplitude because the wake model includes phase effects as
discussed earlier (Fig. 4). In fact, the wake does not contribute
much and the pressure amplitude does not increase to the
extent predicted by the theory. The correlation worsens with
increasing frequency. In these cases, a discrepancy exists be-
tween Loewy’s theory and Kaladi’s panel method and in-
creases with reduced frequency. Remarkable discrepancies
exist between the phase distribution profiles of these two
methods. Kaladi’s modal method still consistently underpre-
dicts the amplitude and overpredicts the phase, the correlation
worsening with increasing frequency. Theodorsen’s theory,
on the other hand, comes surprisingly close to the data at low
frequency. The correlation, however, unlike the case of even
harmonics, starts worsening with increasing frequency. It
therefore appears that the wake vorticity layers tend to annul
each other for odd harmonics of forcing frequency at low
frequency. The phase distribution profile in any case is closer
to the experimental data as compared to the other three meth-
ods. Theodorsen’s theory thus provides a very efficient tool
for predicting amplitude and phase of unsteady pressure at
sufficiently inboard radial location for odd harmonics of forc-
ing frequency, especially at low frequency.

Qutboard Location: Even Harmonics

Figures 6 and 7 show amplitude and phase of unsteady
perturbation pressure at 0.85R for various harmonics of forc-
ing frequency »n. Similarly, Figs. 8 and 9 show amplitude and
phase of unsteady perturbation pressure at 0.95R for various
harmonics of forcing frequency n. As we move outboard, the
above trends change completely. At outboard radial locations
for even n (see Figs. 8 and 9, n = 2, 4), Theodorsen’s pre-
dictions of amplitude are much larger than the experimental
data, because the theory is two dimensional. The phase profile
predictions are also flatter than the experiment. Although the
amplitude decreases and the phase profile slightly steepens
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Fig. 9 Lifting perturbation pressure phase angle at 0.95R.

with increasing frequency, they still differ from experimental
data even at high frequency. Loewy’s two-dimensional theory
also overpredicts the amplitude over the entire chord except
in the leading-edge region. The correlation worsens with in-
creasing frequency. Now, substantial discrepancies exist be-
tween Loewy’s theory and Kaladi’s panel method, mainly due
to the latter’s capability of modeling tip effects. Kaladi’s panel
method comes close to the modal method at low frequency,
but starts departing from it for high frequency. With increas-
ing frequency the modal method comes closer to the exper-
imental data, and with increasingly high frequency the cor-
relation is expected to improve. At high frequency, good
correlation of the phase distribution profile has been obtained
with Loewy’s theory (Fig. 9, n = 4). At low frequency, the
modal method comes close to the experimental phase data.

Outboard Location: Odd Harmonics

At outboard radial locations for odd harmonics of forc-
ing frequencies, Loewy’s theory still predicts higher pressure
amplitude because of the phase effects as discussed earlier,
and three-dimensional effects. The correlation worsens with
increasing frequency. A large discrepancy exists between
Loewy’s theory and Kaladi’s panel method and increases with
reduced frequency mainly due to the latter’s capability of
modeling tip effects. The latter comes closer to the experi-
mental data. Once again, substantial discrepancies exist be-
tween phase distribution profiles of these two methods. Al-
though the panel method comes close to the experiment, it
slightly overpredicts the amplitude. The correlation worsens
with increasing frequency. The modal method correlates the
amplitude of unsteady pressure very well at low frequency,
but slightly underpredicts at high frequency. The panel method
phase approaches that of the modal method at all frequencies.
These two methods correlate phase well at low frequency,
but overpredict at high frequency. At high frequency, like the
case of inboard radial location, Theodorsen’s theory corre-
lates the phase better. The choice of methods that correlate
well with the data at different radial location and test con-
ditions can be made from Table 2.

Inboard Location: Mean Pitch Effects

Figures 10 and 11 show amplitude and phase angle of un-
steady perturbation pressure correlation graphs at w = 40
Hz, & = 10 Hz, n = 4 for various mean pitch angle 6, at
0.70R. As discussed earlier, Kaladi’s panel method follows
Loewy’s theory closely and correlates well with the experi-
ment for even harmonics of forcing frequency at sufficiently
inboard radial locations. When mean pitch is increased, the
correlation deteriorates. The inflow velocity and, hence, the
wake spacing increase with mean pitch. The effect of wake
vorticity reduces and recovery in unsteady pressure is ex-
pected. Thus, as expected, theory predicts higher amplitude
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Table 2 Methods that correlate well with experimental data

Even n Odd n
Low frequency High frequency Low frequency High frequency
Location Amp Phase Amp Phase Amp Phase Amp Phase
Inboard B.C B.,C B,C B.C A A A A
Outboard C D D

D CD D A

Key: A, Theodorsen’s theory; B, Loewy's theory; C, Kaladi's panel method; and D, Kaladi’s modal method.

e Experimental

Loewy’s, Ref.11

- - - Kaladi’s (Panel), Ref.9
RER Kaladi’s (Modal), Ref.9

024 0.36

Amplitude of AC°
012

g0

Phase angle of ACy’ (Deg.)
g0 0 30 100 150 200

Fig. 11 AC, phase angle at 0.70R for various mean pitch angles.

at high mean pitch. The experimental amplitude first increases
with mean pitch and then falls. At low inflow, Loewy’s theory
and panel method correlate well in the leading- and trailing-
edge regions, but underpredict amplitude in the midchord
region. With increasing inflow, these two methods diverge
from each other and rapidly from the data. Analytical pre-
dictions are higher than the experiment all along the chord
except near the leading edge. Kaladi’s modal method consis-
tently underpredicts amplitude and overpredicts phase at all
inflow conditions at an inboard radial location. The phase is
predicted very well by Loewy’s theory and panel method at
low inflow, and by Loewy’s theory at even high inflow. The
panel method phase diverges from Loewy’s theory and the
experiment with increasing inflow. Perhaps more chordwise
and spanwise panels are required for better correlation.

e Experimental

) Loewy’s, Ref.11
- - - Kaladi’s (Panel), Ref.9
------ Kaladi’s (Modal), Ref.9

026 0.39

Amplitude of AGy’
213

il

Phase angle of ACy’ (Deg.)
QS0 0 S50 100 150 200

Fig. 13 AC, phase angle at 0.85R for various mean pitch angles.

Outboard Location: Mean Pitch Effects

Figures 12 and 13 show amplitude and phase of unsteady
perturbation pressure for various 6, at 0.85R. Figures. 14 and
15 show amplitude and phase of unsteady perturbation pres-
sure for various 6, at 0.95R. As we move outboard, the trends
change significantly. A significant discrepancy appears be-
tween Loewy’s theory and the panel method due to three-
dimensional effects (Figs. 14 and 15). This discrepancy in-
creases with 6, as expected. Loewy’s predictions are now higher
than panel method predictions. At very low inflow, Loewy’s
method correlates well with the experiment. Kaladi’s modal
method underpredicts amplitude at very low inflow. For mod-
erate inflow, the panel method correlates better. At high
inflow, excellent correlation is obtained with the modal method.
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e  Experimental

Loewy’s, Ref.11

- - - Kaladi’s (Panel), Ref.9
------- Kaladi’s (Modal), Ref.9
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Fig. 15 AC, phase angle at 0.95R for various mean pitch angles.

A discrepancy in phase exists between Loewy’s theory and
panel method, increasing with @,. At very low inflow, the
panel method correlates phase better. Loewy’s method cor-
relates phase better with increasing inflow, and can thus be
used for predicting phase even at an outboard location.

Discrepancy in Phase Correlation

In all cases, a poor correlation of phase is obtained near
the trailing edge. This may be because all of the predictions
extract phase from a complex representation of unsteady pres-
sure. Near the trailing edge, the pressure amplitude ap-
proaches zero to satisfy the Kutta condition, and hence, in
extracting phase from complex unsteady pressure, division by
asmall quantity amplifies the error. Therefore, the phase near
the trailing edge is not reliable. In the experiments, the time
history of pressure is recorded and a curve-fitting technique
is employed. The phase is extracted as that needed to match
a standard sinusoidal waveform to the recorded pressure time
history. Therefore, the experimental phase angle is more ac-
curate.

Conclusions
Measurements of inflow velocity and chordwise pressure
variations on a two-bladed full-scale teetering tail rotor in
hover have been correlated with analytical predictions, with

and without dynamic pitch excitation. The conclusions are as
follows:

Part I: Inflow Velocity

1) The spanwise variation of the inflow velocity is predicted
very well by Peters’ modal theory, except near the tip. As
expected, the measured inflow velocity drops towards the tip.

2) Both steady and oscillatory inflow velocity data agree
with Peters’ theory. The theory underpredicts the extrema of
inflow velocity variation due to blade passage.

3) The inflow response to pitch perturbation decreases in
amplitude near the blade tip.

Part II: Unsteady Pressure

1) The different features of the various prediction methods
result in good correlations at different test conditions and
locations, as summarized in Table 2.

2) Atinboard radial locations, Loewy’s theory and Kaladi’s
panel method converge and correlate well in both amplitude
and phase of unsteady perturbation pressure for even har-
monics of forcing frequency.

3) Theodorsen’s theory comes surprisingly close to the ex-
perimental data at an inboard radial location at low frequency
for odd n. Thus, at inboard locations, the linear two-dimen-
sional theories serve as inexpensive but reliable tools for pre-
dicting unsteady pressure over the rotor blade. Kaladi’s modal
method consistently underpredicts the amplitude and over-
predicts the phase at an inboard radial location.

4) At outboard radial locations, Kaladi’s panel method works
best for low frequency and the modal method for high fre-
quency for even n for predicting amplitude. For the phase,
the modal method works best for low frequency and Loewy’s
theory for high frequency for even n. For odd n, the modal
method should be used for amplitude and phase at low fre-
quency. The Modal method should be used for amplitude and
Theodorsen’s method for phase at high frequency. These con-
clusions are summarized in Table 2.

5) When mean pitch angle is increased, the correlation with
Kaladi’s panel method and Loewy’s theory deteriorates. The
phase is predicted very well by Loewy’s theory and the panel
method at low inflow, and by Loewy’s theory at high inflow.

6) At an outboard radial location, Loewy’s theory should
be used at low inflow and the panel method at moderate
inflow. At high inflow, excellent correlation is obtained with
the modal method. For phase, the panel method should be
used at low inflow and Loewy’s theory for increasing inflow.

7) A discrepancy exists in phase near the trailing edge for
all cases. The experimental phase angle is more reliable.
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